
Introduction
Perhaps one of the most well-known problems in the history of
mathematics is the one posed by Johann Bernoulli in 1696, who
addressed the readers of the scientific journal Acta Eruditorum:

“ I, Johann Bernoulli, address the most brilliant mathemati-
cians in the world. Nothing is more attractive to intelligent
people than an honest, challenging problem, whose possible
solution will bestow fame and remain as a lasting monu-
ment . . . If someone communicates to me the solution of
the proposed problem, I shall publicly declare him worthy of
praise. ”The problem was simple—to find the quickest path from two

vertically coplanar points A and B for an object to travel that is
affected only by gravity:
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The solution, however, is much more difficult to derive, and it
might seem counter-intuitive at first. When Bernoulli first posed
this problem to the mathematical figures of his time, he originally
provided 6 months of time in which expected solutions to be given.
However, none were received, and at the request of Leibniz (another
notable mathematician who is often considered the co-founder of
calculus), Bernoulli extended the period by another one and a half
years.

By the end of the two-year period in 1698, five mathematicians
had submitted their solutions: Jakob Bernoulli (Johann’s brother),
Issac Newton, Gottfried Leibniz, Ehrenfried Walther von Tschirn-
haus, and Guillaume de l’Hôpital. Each with their own merits, one
of the most interesting and approachable solutions was developed
by Johann himself, and deals with an intuitive understanding of
physics and the behavior of light.



Bernoulli’s Solution
For the motion of an ideal particle where the net force is the re-
sultant of only weight and the normal force, the principle of the
conservation of energy can be used to derive an equation for the
final velocity of a particle, vf , given the magnitude of its vertical
displacement from rest, y (Equation 1):
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Because this equation, and the conservation of energy model as
a whole, is path-independent, it can be used to determine the speed
of the object at any height on the generalized Brachistochrone curve
AB.

Another key to his solution was his consideration of Snell’s Law
(Equation 2), which describes how light is refracted as it travels
across a boundary between media of varying density:
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where θ1 and θ2 are the angles of incidence and refraction (the
angles between the initial and resulting rays of light and the normal
of the boundary of the surface), v1 and v2 are the initial and resulting
phase velocities, and k is some constant:
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Using these models, Bernoulli solved the problem with an ele-
gant thought experiment. He considered some non-uniform optical
medium where the density becomes continuously less from top to
bottom. If light was shone through, it would get refracted and be-
come increasingly faster according to Snell’s Law. Furthermore,
by carefully controlling the density at various points, the velocity at
those same points could be controlled such that they are the same
as Equation 1. By doing this, the optical medium is now a model
for the Brachistochrone problem, where A is a point at the top, and
B is a point at the bottom:
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According to Fermat’s Principle, or the principle of least
time, the path that light takes is always the one where light can
travel along it in the shortest time possible. This makes the equation
of this curve the quickest solution to the Brachistochrone problem.



Enlarged, the triangle made by the tangent line, dy, and dx appears
as follows:
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From this triangle, sin θ can be manipulated as follows to create an
expression in terms of dx and dy:
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Substituting this into Equation 2 as sin θ gives:
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where k is still some constant. Finally, by substituting Equation 1
for v, the following equation is produced, which can be solved for
dy
dx to produce the differential equation labeled Equation 3.
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This new equation is immediately apparent to be the differential
equation for a cycloid, a fascinating curve generated by a point on
the end of a rolling circle:



Through this, Bernoulli showed that the quickest solution to his
own Brachistochrone problem is indeed an inverted cycloid, which
is the path an object will take to get from A to B in the shortest
time possible:
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Computational Model
Bernoulli’s result can certainly be confirmed by using more rigor-
ous proofs involving tools from the calculus of variations and opti-
mal control, but those derivations are far beyond the scope of this
project. Instead, a much easier method was used to provide a second
confirmation of the solution—a computational model.

Overview

Figure 1: Originally developed
by Sun Microsystems and cur-
rently owned by Oracle, Java
and its related software cur-
rently run on over three billion
devices worldwide

Programmed in the language Java,
the simulation program models
real-world physics through a mock-
continuous approach. While true
continuous simulation is impossi-
ble without implementing multiple
complex calculus-based models, a
trick was borrowed from the funda-
mentals of calculus: that the rate of
change of a quantity, such as posi-
tion in the case of velocity, is based
off of its change given a small, finite
value of time dt as dt→ 0. In other
words:

v := dx

dt
= lim

dt→0

∆x
dt

Instead of modeling the velocity of the sliding masses in the
Brachistochrone simulation as an instantaneous rate of change, it
was modeled as the rate of change over extremely small values of dt;
in this case, the default is 1/120, 000th of a second, or 0.000008333
seconds. By doing this, the values given from the simulation become
extremely close approximations for the real-world results, and as
such, provide another way to validate Bernoulli’s solution.

The source code is hosted on a
repository from github.com, an
open-source development version
control service based off of git. A
link is available through the QR
code to the left.



Approach
While each technical detail won’t be discussed at length, one of the
key aspects of the computational model is its use of abstraction, or
the concept that if something can be generalized, it should. With
this principle in mind, three different implementations of the Curve
class were developed:

1. StraightTrack, which represents the straight path that trav-
els directly from A to B (the shortest distance possible)

2. CircularArc, which models a segment of the circle that passes
through three points: A, B, and some other controlling point
C

3. CycloidArc, which represents the cycloidal arc that intersects
points A and B
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Creating a simulation for the different path shapes was, for the
most part, relatively simple, as for some width and height, curves
(a) and (c) are constrained to only one possibility. (in this case
w = 5 m h = 3 m).

However, for the circular arc, (b), there exist an infinite num-
ber of paths that connect point A to B. In order to determine the
quickest one with which to compare to others, an optimization with
respect to time had to be performed (See ‘Circular Arc Optimiza-
tion’)



For modeling the masses’ motion over the different paths, Equa-
tion 1 was used, which describes how the magnitude of the velocity
vector, |~v|, at any given point along a path is proportional to the
square root of its vertical position:
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√
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where y is the vertical distance that the object has traveled since
it was at rest. Then, ~v’s angle, θ~v, can be calculated by taking
the arctan of the derivative, dy

dx , at any given point, as the velocity
vector is always colinear to the tangent line:
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Given |~v| and θ~v, the horizontal and vertical components of the
velocity can be determined:

vx = |~v| cos θ~v

vy = |~v| sin θ~v

Finally, these can be iteratively applied to the position of the mass,
~r for each dt by adding dx and dy to rx and ry, respectively:

vx := dx

dt
vy := dy

dt
dx = dt|~v| cos θ~v dy = dt|~v| sin θ~v

Circular Arc Optimization
In order to find the quickest circular path possible from A to B,
a common optimization algorithm called gradient descent was
used, which allows the time from A to B, tAB, to be minimized.
The process is simple:



1. First, the two extremes are tested in order to find an estimate
for the gradient. In this case, the two circular arcs in picture
(a) are simulated, and, depending on which is lower on the time
gradient, that is, which gets the mass from A to B in a lesser
time, the algorithm moves closer to that side.

2. Next, the process repeats to a depth n, slowly converging to a
local minima of the arc-space, which, in this case, is also the
absolute minimum. This convergence is displayed in images
(b-d)

(a) n = 1: The initial iteration,
showing the two extreme values
for steepness at the top and bot-
tom

(b) n = 3: Iteration 3 after the
algorithm stepped down the gra-
dient twice by becoming more
steep

(c) n = 4: Iteration 4 when
the algorithm decided decreas-
ing the steepness would mini-
mize time

(d) n = 8: Iteration 8, where the
two simulations begin to con-
verge to the optimal and fastest
circular solution



Results

Figure 5: The final simulation
screen, showing the three differ-
ent Curves: StraightTrack
(turquoise), CircularArc (vi-
olet), and CycloidArc (ma-
genta)

Using the three curves outlined
in ‘Approach,’ each was tested
to determine their relative speed
in a simultaneous simulation as
shown to the right. With a
∆x of 5 meters and a ∆y of
−3 meters, the following re-
sults were derived for the time
it takes for the mass to get
from A to B, tAB, in sec-
onds: (Note that for the fi-
nal results, an extremely small
dt was used in order to attain
a high level of approximation:
for this, dt = 1/960, 000 sec or
1.041666× 10−6 sec)

Curve tAB (sec)
StraightTrack 1.5116
CircularArc 1.2679
CycloidArc 1.2616

Using basic physics calculations, the time it takes for an object
to travel from the start of a 5 × 3 meter frictionless ramp can be
found to be approximately 1.52031 seconds, making the predictions
derived via simulation supposedly within only a 0.57% error.

And, as is clearly shown by the results, the cycloid track is
definitively the quickest solution to the Brachistochrone problem,
beating the straight track and even the quickest possible circular
arc track (albeit by very little). Furthermore, the results show that
the shortest solution, the straight track, is definitely not the quickest
one.


